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ABSTRACT 

Consider a real analytic diffeomorphism, f: R 2 --* R 2, with q as a non- 

hyperbolic fixed point and D/(q) = Id. Placing sufficient conditions on 

lowest-order non-linear terms in the expansion of f, we show the function 

is topologically conjugate with a decoupled product map. The impetus for 

studying such a function arose in the classical three-body problem. 

1. I n t r o d u c t i o n  

Imposing non-trivial sufficient conditions on a 2-dimensional diffeomorphism 

ensures the diffeomorphism is topologically conjugate to a decoupled map. This 

conjugacy is in a quasi-sector of a non-hyperbolic equilibrium point, hence the 

title. 

Such diffeomorphisms are Poincard maps in several applications. For example, 

these conditions are more general than those arising naturally in several settings 

of the well-known three-body problem, [1]. 

Consider a vector bundle with base space a 2-manifold, having fiber dimension 

2. A vector cone is formed by first fixing an element of the base space, then 

choosing a particular subset within the fiber over this element. This particular 

subset is closed under addition and scalar multiplication. An orbit for an element 

of the base space and its associated cone field are studied. To this end ponder 

any transversal a~_ong the stable manifold of the equilibrium point, along with its 

tangent space. 

As a transversal iterated by the diffeomorphism, the tangent space is acted on 

by the derivative of this diffeomorphism. Observing how this derivative acts on a 
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vector cone reveals that properly chosen transversals will not "wiggle" too much. 

A foliation of dimension one of the base space is then defined, the iterates of a 

properly chosen transversal the leaves. 

Applying the above ideas, mutatis mutandis, to the inverse of the diffeomor- 

phism, yields a coordinate system with domain the base space. Construction of 

the topological equivalence then follows from geometric methods, [2]. 

2. S t a t e m e n t  o f  r e su l t s  

Let U be a manifold and (I): U --* (~(U) be a diffeomorphism with a fixed point 

q �9 U. That  is, (I)(U) has non-empty intersection with U. Define the s t ab l e  se t  

of  q to be points in U that are f o r w a r d  a s y m p t o t i c  to  q, 

WS(q,  ~)  = {y �9 U: ~k(y)  ---* q as k ~ oc}. 

Define the u n s t a b l e  set  of  q to be points in U, b a c k w a r d  a s y m p t o t i c  to  q, 

WV(q, r = (~ �9 u: ck(y) _~ q as k -~ - ~ } .  

When the context is clear, write W S and W U respectively. 

A function r E O ( N +  1), r R 2 --* R 2, if for (x,y)  near the origin there 

exists some constant C �9 R such that IIr I < CIl(x, y)ll g+l .  Write r Cy 

to denote respective partial derivatives of a given function r Further, write 

r �9 C ~~ if r has continuous partial derivatives of all orders. The letter t used in 

superscripting indicates transpose. 

Analysis for our map, f ,  takes place in a subset, U, of the first quadrant 

Q1 = {(x, y) �9 R2: x >_ 0 and y >_ 0}. This subset U is dependent on the map f ,  

and is always sufficiently small. And now the main theorem. 

THEOREM: Let ]: U --* f ( U )  be a diffeomorphism of the form 

( x ( 1  - p(x,y) - r (~, y)) ~t 
(2.1) I(x,  y) = ~(1 + p(x, y) + t (x, ~)) ] 

with the right-hand side having higher-order terms described by 

n 

p ( x , y ) = E a j x J y N - i  , a ~ � 9  Vj; r , t � 9 1 7 6  
5=o 
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A s s u m e p  > O, px > O, Pu > 0 andp~pu > PP~y, in Q 1 -  {(0,0)}. Then the 

diffeomorphism f is topologically conjugate to the decoupled product map 

f l w  s x f l w  v. 

Observe that the map, f ,  is a local diffeomorphism at the origin. Also (0, 0) 

is a non-hyperbolic stationary point for f .  This with the conditions in the main 

theorem imply those in I1, Theorem 1] for both f and f - 1  Therefore f and f -1  

have stable sets of the origin given by graphs of differentiable functions. In fact 

the graphs are one-dimensional C ~ manifolds, [3]. 

Any diffeomorphism satisfying the hypothesis of the main theorem will be 

referred to as of  t he  fo rm (2.1). Placing the condition p~py > PPxu on tile 

homogeneous polynomial p is redundant if p has positive coefficients; this is 

shown in section 4. 

3. R e m a r k s  

Remarks in this section establish some generality of the setting. To begin, an 

angular-valued function 0 = 0(r), r E [0, r0], is a p-radial  curve  if 0 is a 

Lipschitz function of the radial variable r with Lipschitz constant p. A p-sector  

is formed by two p-radial curves that intersect only at r = 0. These definitions 

are similar to the definitions for p-vertical curves (p-horizontal curves), and p- 

vertical strips (p-horizontal strips) given in [4]. 

Consider another diffeomorphism g: Q ~ 9(Q); Q is the p-sector formed by the 

p-radial curves 01 and 02 emanating from the origin. For this section's purposes, 

and without loss of generality, assume that g has (0, 0) as a fixed point. These 

curves will represent the stable set of the origin and unstable set of the origin for 

9. Ideally this map, g, is, up to an analytic change of coordinates, of the form 

(2.1). 

Assume the curves 01 and 02 are differentiable functions or r that intersect 

transversally at the origin, write O1(0) for D,01(0), and write 02(0) for D~02(0). 

Suppose that the contractive rate of movement along 01 is non-linear and the 

expansive rate along 02 is non-linear. Assume the lowest-order non-linear terms 

that give the contraction rate and the lowest-order non-linear terms that give the 

expansive rate are of the same order. 

Let fir, 0]] be the polar representative of (x, y), so r ~ = x ~ + y2 and 0 = 
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tan- l (y /x ) .  Define the function 

C ( ( x ,  y ) )  = G([ [ r ,  0]]) = [[r, - - o1(0)]] .  

The composite function G o g o G -1 positions Q into a neighborhood of Q1, 

such that the stable set of the origin is tangent to the x-axis at the origin. Also, 

the unstable set of the origin is positioned tangent to the y-axis at the origin. 

Movement defined by g in Q can be studied via movement defined by G o g o G -  1 

in Q1, since G o g o G -1 would be in the form given in [1, Theorem 1]. 

Write W / for the center-s table  manifold of the origin, for g, and write W U 

for the center-unstable  manifold of the origin, for g. Then near the origin, 

W9 s = {(x,~l(x))}  and W u = {(w2(y),y)}, where the w, are C ~ functions. 

Another Coo coordinate change, fl(x, y) = ( x -  ~2(Y), Y -  Wl(X)), positions W s 

locally onto the x-axis and places W v locally onto the y-axis. Summarily, these 

changes of coordinate systems hopefully produce a diffeomorphism of the form 

(2.I). 

4. L e m m a  

For a given map ]: U --* f (U),  and given an element (x, y) in U, the o r b i t  o f  

(x, y) in U, or simply o rb i t  when the context is clear, is defined as 

Or(x ,y )  = { p ( x , y )  �9 u :  k �9 Z}.  

Interest in orbits of sections within the base space is fundamental, therefore 

notation involving evaluation of functions along an orbit is numerous. To sim- 

plify, write (xk, Yk) for the kth iterate of (x, y) by f ,  that  is, f k (x ,  y) = (xk, yk). 

Additionally write Pk = p(xk, Yk), etc., where the notation for a function evalu- 

ated at (xk, yk) is simplified by way of subscripting when no previous subscript 

exists. If the function already has a subscript, as in a partial derivative, then 

superscripting is used. 

In the supportive arguments as well as the preceding comments, concepts about 

cones  are key. Here cones are obtained by taking a vector bundle and fixing an 

element of the base space, then choosing a subset of the fiber over this element. 

This subset is closed under addition and scalar multiplication. 

For the following purposes, define a v e c t o r  cone  V, with b a s e p o i n t  (x, y), 

and e n d p o i n t s  a and b: 

V = V ( ( x , y ) , a , b ) =  { ( ( x , y ) , a ( ~ ) ) :  a < v < b,~ E R}. 
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Endpoints may depend on the basepoint, a = a(x, y) and b = b(x, y). 

Given any indexing set K, a cone  field, V/r = (V((xk,  Yk), ak, bk))keK, is a 

family of vector cones. An inva r i an t  cone  field for  f is a cone field indexed 

by some subset H, of the integers, Z, such that 

Df(Xk,  yk)[V((xk, Yk), ak, bk)] C V((xk+l, Yk+l), ak+l, bk+l), Vk �9 H. 

Two cone fields are d i s jo in t  if they are disjoint as sets. That  is, the cone fields 

VK and VM are disjoint if 

\ h E M  

A real-valued i nc l i na t i on  function, A, is called into action on the vector bundle 

U x R 2, as in [2]. This facilitates description of movement of a transversal inside 

the base space. To inaugurate this function, fix an element (x, y) in the base 

space U. Define ,k: l~ 2 ---* R for any v -- (vl, v2) t in the fiber over (x, y), 

Vl 
A ( x )  = - .  

V2 

If A(v) takes a value near zero, then v is nearly vertical. If the value of A(v) is 

arbitrarily large in magnitude, then v is arbitrarily horizontal. 

Notation involving (x, y) in vector cones becomes cumbersome, furthermore the 

context is generally apparent, hence this portion of the notation will be omitted 

whenever possible. 

Proving the topological conjugacy requires the following lemmas. Some results 

that these lemmas assert are that  points exodus U under iteration by f ,  and that 

there exist disjoint invariant cone fields for f and f -1 .  

LEMMA A: For any (x, y) C U, x > 0 and y > O, U sutticiently small, and f of 

the form (2.1), there exists an iterate (xk, Yk) which is not an element of U. 

Proo~ Initially, U is chosen so that the terms of highest order in the Taylor 

expansion are dominated by the homogeneous polynomial p. 

Given the point (x, y) E U, where x > 0 and y > 0, construct two line segments, 

a vertical line segment LV --- LV(x ,  y) = ((x,  z) E U: z E [0, y]}, and a horizontal 

line segment LH = n i l ( x ,  y) = {(w, y) e U: w e [0, x]}. 

Since f is of the form (2.1), Px > 0 and p~ > 0. Let ~ri be the projection map 

onto the ith component. For (x, z) �9 LV,  the inequality Irl o f ( x ,  y) < ~rl o f ( x ,  z) 
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holds. Also for (w, y) 6 LH, r2of(x,  y) > 7r2of(w, y). In particular, ~rlof(x, y) < 

7rl o f ( x ,  0) and ~r2 o f ( x ,  y) > 7r2 o f(O, y), so that 7rl o (xk, Yk) <: zq o f k (x ,  O) 

and 7r2 o (xk, Yk) > 7r2 o fk(0, y), for all k > 0. | 

LEMMA B: Let q be any homogeneous polynomial of degree k >_ O; then kq = 

xqx + yqy. 

LEMMA C: Let q be any homogeneous polynomial of degree k > 0 and let f be 

of the form (2.1); then ql = q - xpq~ + YPqu + O(2k + 1). 

Proo~ Taylor expansion. | 

LEMMA D: Let q be any homogeneous polynomial of degree k >_ O, with q > 0 

in the sector S = {(x,y): r > O, t an - l ( y / x )  6 [81,82]}. Let T 6 0 ( k  + 1); then 

there exists some r0 > 0 such that, in the set S n  {0 < [[(x,y)[[ < r0}, the map 

q + v is strictly positive. 

Proof" Denote the polar representative of (x, y) by [Jr, 8]]. Write q + T = 

rk(~(8) + rT(r, 8)), where q = rk~?(8) and r = rk+lT(r, 8) in the polar coor- 

dinate system. The assumption that q > 0 in S implies that when 8 is in the 

interval [81, 82], then there exists/3 such that ~7(8) _>/3 > 0. Let M be a constant 

such that for r < rM, with rM small enough, []T(X,y)[[ < M r k+*. Then for 

f < min{rM, j3/2M}, and in S, 

q + r _ q - Irl  = - t iT(r,  0)l) _> rk(fl - rM)  > rk(fl/2) > 0. | 

LEMMA E: Let f be of the form (2.1), and let (xo, Yo) 6 U; then there exist 

invariant cone fields for f and f - l ,  defined by Or(x0, Y0), which are disjoint. 

Proof'. All analysis is in the sufficiently small sector U, which will shrink. In 

proving this result, a properly chosen cone field is shown to be an invariant cone 

field. With this intention, take an element (x0, Yo) in U, with its associated orbit, 

Or(x0, Y0), and define the cone field VK = V((xk, Yk), ak, bk)k6g, by setting 

k 
-PY bk = 0. 

a k  - p k  x , 

VK will be shown to be an invariant cone field for f .  For this task, make pairwise 

comparisons of consecutive elements of the orbit. Subsequently, the k used in 
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subscripts is removed, and it will be enough to show that, for all (x, y) and 

(xl, Yl) in Or(xo, Yo), 

D f ( x ,  y)[V((x ,  y), a, b)] C V ( ( x l ,  y , ) ,  al,  b~). 

Explicitly writing the derivative, Dr ,  

D f ( x , y )  = ( 1 - p -  xp~: + O ( N )  - x p u  + O ( N )  ) 
UPx + O( N)  1 + p + YPu + O( N)  ' 

note that Pu > 0, thus )~(Df(x,  y)(O, 1) t) < A((0, 1)t). Since the diffeomorphism f 

is orientation preserving, it remains to show that A ( D f ( x ,  y)(a, 1) t) > )~((al, 1)t). 
Recall the condition PPxu < PxPu in Q1 -{(0, 0)}. Since p > 0 in this set, this 

is the same as, in Q1 -{(0,0)}, 2(N - 1)ppp~ u < 2(N - 1)pp~:py. Appealing to 

Lemma B, in Q1 -{(0,  0)} this condition becomes 

(4.1) (xp~: + YPu)PP:~u + (xp~ + YPu)PP~y < 2pPzPu + 2(N - 2)pp~:pv. 

Rearranging terms yields another equivalent inequality 

(4.2) ( xpx + YPy )PPzu < 2ppxPy + ( ( N -2 )p~  -yp~y)ppy + ( ( N - 2 )p u -xPxu)PPz .  

Expanding the left-hand side of (4.2), rearranging terms and applying Lemma 

B again, produces 

(4.3) xpp~:Pzu + YPPuPxy < xppypz~: + PP~:Pu + YPP~:Puu + PP~P~" 

Adding P~:Pu to both sides of (4.3), and after manipulating terms, (4.3) is seen 

to be equivalent to 

(4.4) pxPy - PPzPy - xppyp~z + yppyp~:y < PxPu + PP~:Pu - xppzp.~u + YPPzPyu. 

Making use of Lemma D, with terms of order 2N - 2 fixed, and considering 

(4.4), the following inequality is valid in U - {(0, 0)}: 

(Pu - PPu + O ( 2 N  - 2))(p~ - zppx~: + YPP~u + O ( 2 N  - 2)) 

(4.5) 
< (Pu - xpp~x + yppuy + O ( 2 N  - 2))(px + pp~ + O ( 2 N  - 2)). 
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Terms of higher order are the remainder terms from Lemma C and appropriate 

higher-order terms confronted in application of D r .  Roughly speaking, (4.5) is 

inequality (4.4) with both sides factored. 

Use the fact that p~ > 0, and py > 0, then rewrite (4.5) to obtain 

(4.6) py(1 - p) + O ( 2 N  - 2) py - xppy~ + yppyy + O ( 2 N  - 2) 
p~(1 + p) + O ( 2 N  - 2) < p,: - x p p ~  + ypp~y + O ( 2 N  - 2)" 

Observe that the right-hand side of inequality (4.6) is 1 1 (py/p~).  Add and subtract 

the quantity xpxpy to the numerator of the left-hand side. Also add and subtract 

the quantity ypxpy to the denominator of the left-hand side. In a small U, 

,~ (Df (x ,  y)(_py,p~:)t)  > ~((_py,p~)t) ,  

showing that VK is an invariant cone field. 

Applying an analogous argument to f - 1 ,  the invariant cone field is W K ,  com- 

prised of vector cones V, with elements whose fiber coordinate of interest is of 

the form (1, v) t. Here let the vector cones constructed for the inverse have end- 

points a = - p ~ / p y  and b = 0. The above argument holds when applied mutatis  

mutandis  to this cone field, showing that indeed it is invariant. Moreover, this 

cone field is disjoint from the cone field constructed above for f .  | 

LEMMA F: Let  q be a homogeneous polynomial  o f  degree k >_ 1, with non- 

negative coefticients and at least two posi t ive coefficients; then in Q1, 

qxqy - qqxy > O. 

Proof: Write the polynomial q as 

k 

q(x,  y)  = ~ aixiy k-i. 
i = l  

Using the symmetry of the coefficients and the hypothesis on the coefficients, the 

following inequality holds: 

k--1 k - 1  

qxqy - qqxy = Z Z (j  - i )2a ia jx i+J- lY2k- ( i+J) - i  
i=1 j = i + l  

k--1 k 
�9 �9 _ v - - . ~  ~ - 1  2 k - i - 1  

+ a~ } -~(k  - j ) 2 a ~ z k + 3 - 1 y k - ~ - I  + .0  2_,  Z aix y 
5=1 i = l  

> 0 .  | 
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5. P r o o f  of  t h e  M a i n  T h e o r e m  

165 

Proo~ Take any point (xo, 0) along the stable manifold, W s, in a U satisfying 

the finite number of sufficiently small requirements described above. The interval 

[lh(f(xo, 0)),xo] lies along the stable manifold, and Uk_>o fk([Zrl(f(Xo, 0)),x0]) 

contains W s, excluding the origin. 

Look at a vertical line segment, VL, from (x0, 0) to (x0, Yo), where Yo <_ x N. 
Consider the image of the vertical line segment, f (VL), and its intersection point, 

f(xo, 0), with the stable manifold. Let F: [0, 1] ~ [0, 1] be any C ~ perturbation 

function with F(0) = 0, F(1) = 1, F(t) > 0 for t in [0,1], and F(k)(0) = 0, for 

all k _> 1, where the k superscripting is the kth derivative. Define a homotopy 

"r: VL x [0, 1] --* f ( Y n )  by 

t) = ( r ( t ) f ( x o ,  y)  + (1 - r(t))(x0, y)). 

Let F be the closed region bounded below by the closed interval 

[~rl(f(xo, 0)), xo], bounded above by the curve "r((x0, Y0), [0, 1]), and on the sides 

bounded by the vertical line VL and VL's image f (VL).  The above conditions 

are sufficient to show that "y is one-to-one and onto the fundamental domain F. 

Consider the horizontal line segment, HL, contained in U, with one end on the 

unstable manifold and the other end some iterate, m, of (x0, Y0). From the proof 

of Lemma E, and the definition of the homotopy ~, the set 

Uk>0(fk(F) N U) fills the region above W s, and under the continuous curve, 

JC = HL U (Uo f~('r((xo, yo), [0,1]))). 

Final modification of the set U, in addition to satisfying the sufficiently small 

conditions above, is to let U be the region bounded above by the continuous 

curve JC, on the left by the unstable manifold of the origin W U, and on the 

right by the vertical line VL, and beneath by the stable manifold of the origin 
W 8" 

Remark that iterates of the line segment VL and iterates of "~(VL, t) define 

a foliation, t'1, for U. Every point in U is in some unique iterate of a leaf in 

F. Inverse iterates of HL may be used to define a second foliation, 9r2, of U. 

In defining -7"2, the fundamental domain, F ' ,  will be the closed region bounded 

above by HL, below by f - I (HL) ,  on the left by the unstable manifold W U, and 

on the right by fm-l(~((xo, Yo), [0, 1])). 

To define the foliation of F ' ,  take F as above, and define ~'1: HL • [0, 1] ~ F '  
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by 

7x((x,y,~),t) = (r(1 - t)(x,y,~) + (1 - r (1  - t ) ) f - l (x ,  ym)). 

The foliation $-2 has leaves defined in F '  by 71(HL, t), and leaves defined in U by 

f -k(7(HL,  t)), k > O. Therefore every point in U is in some unique iterate of a 

leaf in F ' .  For a leaf taken from $-1, Lemma E permits at most one intersection 

point with a leaf taken from $-2. 

Apply this same technology involving F and 7 to any decoupled map 

d: QI '  --* d(Ql ' ) ,  d(x,y) = ( x -  dl(x),y + d2(y)), where the di are 0(2)  and 

positive. QI '  is a subset of Q1 with the vertical line segment VL' determining 

the horizontal line segment, HL', by taking as an endpoint for HL' the mth 

iterate of the endpoint of VL'. 
Since the sequence, ((xk -- dl(Xk))k>0, determined by a small initial value of 

x, is decreasing and bounded below, it converges. Similarly, (Yk - d2(yk))k>0 

converges. In fact, both sequences converge to 0. 

Denote this second set of foliations defined with respect to dl and d2, as 791 

and 7~2, with leaves of respective fundamental domains denoted by "~2(VL', t) and 

73(HL', t). 
Proving the main theorem is the choice of letting dl be f restricted to the 

stable manifold, and letting d2 be the restriction of f to the unstable manifold. 

Points in the sets U and QI '  can be represented with respect to the coordinate 

systems that  have been defined. With respect to $-1 and $-2, and for (x, y) in 

U, (x,y) = fk('~(VL, t ) )n  f-i('yx(HL, s)), for some s,t �9 [0,1] and k,i �9 Z. 
This slightly maligns the notation. With respect to Pl  and P2 for (x', y') in QI' ,  

(x', y') = dJ(7(VL ', t l))  CI d-h(71(HL ', Sl)), for some sl, tl �9 [0, 1] and j,  h �9 Z. 

These representations will be used to construct the topological conjugacy. Define 

a function H: U ~ QI '  by 

H(x, y) = H(fk(7((Xo, 0), t)) n f-i(~'l((0, Yrn), 8))) 

= dk (72(((Xo) ', 0), t)) tq d-i(73((0, (y,~)'), s)). 

That  is, H is defined by projection along leaves onto the stable manifold and 

unstable manifold of the origin. Here (Xo)' determines VL', and (Yo)' determines 

HL I. 

Now to show that  H o f = d o H. Let (x, y) = fk('y(VL, t)) n f-~('yl(HL, s)); 

then for some (xo, z) 6 VL, (w, ym) 6 HL, s �9 [0,1], t �9 [0,1], and k, i  �9 Z, 
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write (x, y) = fk('r((Xo, z), t)) n f-i(~/l((w, ym), s)). Observe, 

167 

H o f ( x ,  y) = H( f ( fk (7( (xo ,  z), t)) n f - i ( '~l((w,  Ym), 8)))) 

= H(fk+l('~((XO, 0), t)) n f- i+1 ('~l ((0, ym), S))) 

= d k+l ('~2(((xo)',  0) ,  t))  n d -~+1 ('~3((0, (ym)'), s)) 
- i  = d(dk(72(((Xo) ', 0), t)) n d ('r3((0, (Ym)'), s))) 

= do g ( x , y ) .  

Open sets having as boundaries the segments of p-horizontal and p-vertical 

curves from the foliations ~-l,-~2, 7~1 and P2 form a base for the topology on U 

and QI',  respectively. Therefore H is a homeomorphism. | 
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